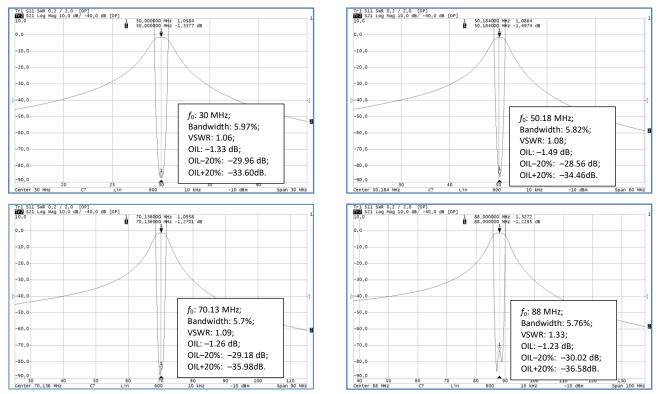


The PS30-88 is digitally tunable filter operating from 30 MHz to 88MHz. Parallel interface is used for tuning. The module can be installed either in receiving or transmitting tract. PS30-88 has low insertion losses, high RF power handling, wide operating temperature range and fast tuning speed. The module can work in frequency-hopping spread spectrum mode.

PS30-88 Specification:

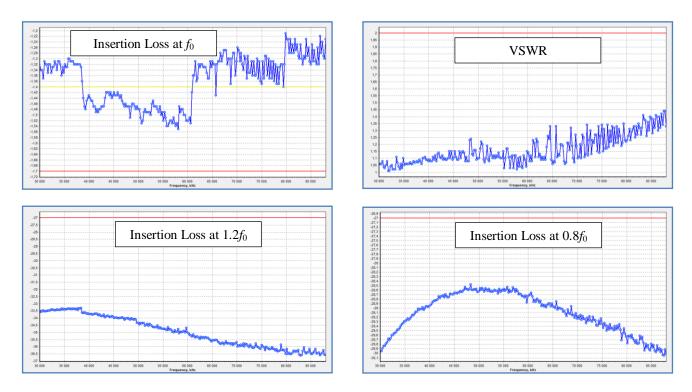
30 to 88 MHz
50 Ω
2:1
20 Watt (input)
Up to 50 Watt
nt +100 dBm (input)
+50 dBm (input)
$\pm 80 \text{ PPM/}^{\circ}\text{C}$
Parallel
25 µS
5V @ 2A
7 typical
-40°C to +65°C
102x76x65 mm
460 g
SMA


PS30-88 specification

#	Bandwidth (3 dB), %	(2 dB) 0/ Insertion Loss,	Shape factor (30 dB)		
		Dalluwiulli (5 uD), %	dB	Overall	Low Side
4	3.5/4.5	2.9/3.6	6.1/6.5	6.8/7.2	5.1/5.6
6	5.5/6.5	1.4/1.7	6.5/6.8	7.25/7.65	5.35/5.8

Note: table values are shown as average/maximum.

Frequency response functions and VSWR functions


Some frequency response functions and VSWR functions are shown below:

Note: f_0 — tuning frequency; VSWR — VSWR at f_0 frequency; OIL — insertion loss at f_0 ; OIL-20% — insertion loss at 0,8 f_0 ; OIL+20% — insertion loss at 1,2 f_0 .

PS30-88 performance

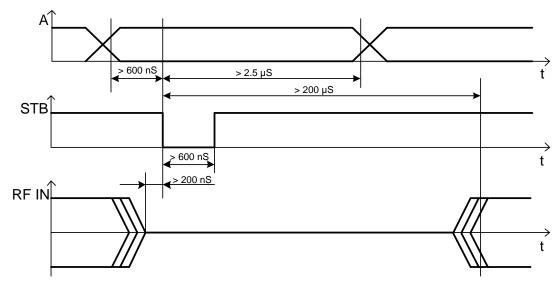
The following diagrams show value of Insertion Loss at f_0 , Insertion Loss at $0.8f_0$, Insertion Loss at $1.2f_0$ and VSWR at each tuning frequency.

Pinout & Ratings

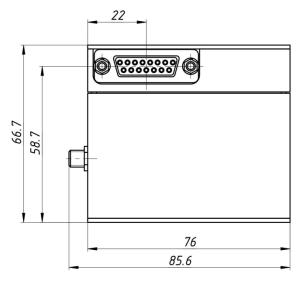
PIN #	Reference designator	Description	Notes	
1	A2	Tune Bit 2	Active: 5V; Inactive: 0V	
2	A3	Tune Bit 3	Active: 5V; Inactive: 0V	
3	A4	Tune Bit 4	Active: 5V; Inactive: 0V	
4	A5	Tune Bit 5	Active: 5V; Inactive: 0V	
5	A6	Tune Bit 6	Active: 5V; Inactive: 0V	
6	A7	Tune Bit 7	Active: 5V; Inactive: 0V	
7, 9, 11, 12	GND	Digital/RF Ground	—	
8	VCC	+5V Power Supply Input	4.75 to 5.25V @ 800mA	
10	N/C	No Connect		
13	STB	Strobe	Active: 0V; Inactive: +5V	
14	A0	Tune Bit 0	Active: 5V; Inactive: 0V	
15	A1	Tune Bit 1	Active: 5V; Inactive: 0V	

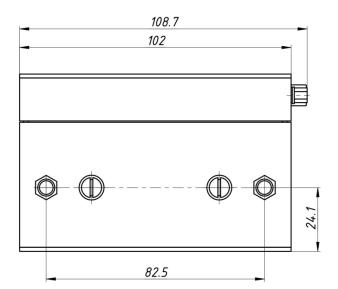
Parallel interface description

Serial interface consists of 9 signals: A0-A7 (tuning frequency code) and STB (strobe). Tuning frequency code is calculated by X_{10} conversion into binary code. X_{10} is calculated by the formula:


$$X_{10} = \left(\frac{f_0 - f_l}{f_h - f_l}\right) \times 250$$

 f_0 — tuning frequency; f_l — low frequency of the band; f_h — high frequency of the band. If you wish to tune to 62.48 MHz, the tune word is:


$$X_{10} = \left(\frac{62.48 - 30}{88 - 30}\right) \times 250 = 140;$$


$$140_2 = 10\ 00\ 11\ 00.$$

Time carts are shown below.

Mechanical Outline

Note: sizes are shown in millimeters.