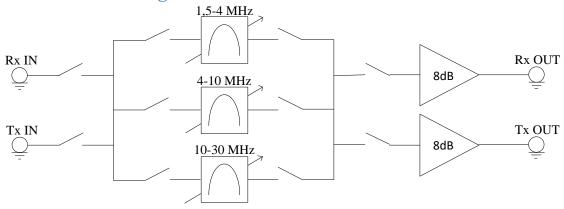


The pre-postselector PPS1.5-30 is digitally tunable filter operating from 1.5 MHz to 30 MHz.PPS1.5-30 can be included either in or transmitting tract receiving input/output commutation. This module consists of three (3) internal tunable bandpass filters (the frequency range divided between them in the following way: 1.5-4 MHz, 4-10 MHz and 10-30 MHz) and two internal amplifiers which compensate filter's insertion losses (one of amplifiers works in receiving tract while another one works in the transmitting tract). PPS1.5-30 uses serial interface for tuning.

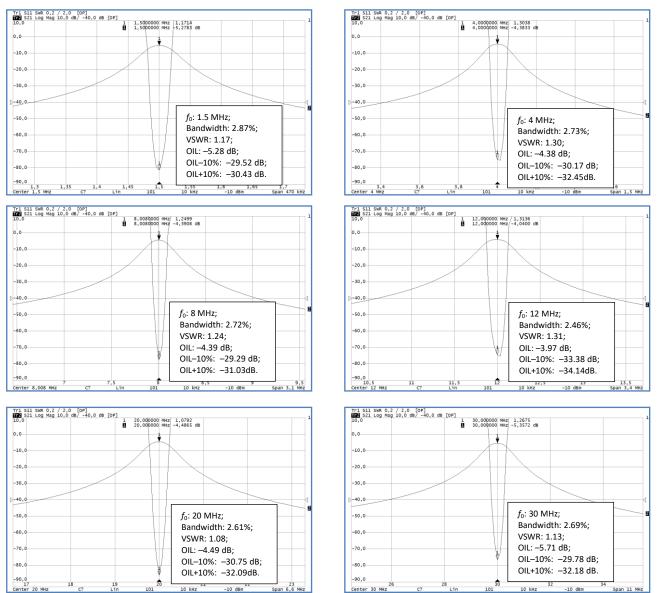
PPS1.5-30 Specification:

| Frequency Coverage (3 bands)        | 1.5 to 30 MHz             |
|-------------------------------------|---------------------------|
| Input/Output Impedance:             | 50 Ω                      |
| In-band Input/Output VSWR           | 2:1                       |
| In-band RF Power Handling           | 5 Watt (input)            |
| Out-band RF Power Handling          | Up to 20 Watt             |
| In-band Second Order Intercept Poi  | nt +100 dBm (input)       |
| In-band Third Order Intercept Point | +40 dBm<br>(input)        |
| Center Frequency Drift:             | ±80 PPM/°C                |
| Tuning Control                      | Serial                    |
| Tuning Speed                        | 150 μS                    |
| DC Power Consumption (Static)       | 5V @ 800mA<br>12V @ 300mA |
| Shape Factor (30 dB/ 3 dB)          | 7 typical                 |
| Operating TemperatureRange          | -40°C to +85°C            |
| Size:                               | 162x92x48 mm              |
| Weight:                             | 420 g                     |
| RF Connection                       | MCX                       |


PPS1.5-30 filters' specification

| FrequencyRange | # | Bandwidth (3 dB), % | Insertion<br>Loss, dB | Shape factor (30 dB) |          |           |
|----------------|---|---------------------|-----------------------|----------------------|----------|-----------|
|                |   |                     |                       | Overall              | Low Side | High Side |
| 1.5-4 MHz      | 5 | 4.6/5.5             | 5.0/5.9               | 5.8/6.1              | 6.8/7.3  | 4.8/4.9   |
|                | 4 | 3.6/4.5             | 5.2/6.2               | 5.9/6.2              | 6.9/7.2  | 4.9/5.0   |
|                | 3 | 2.5/3.5             | 5.6/6.5               | 5.8/6.2              | 6.8/7.1  | 4.8/5.0   |
|                | 2 | 1.7/2.4             | 6.1/6.9               | 5.9/6.1              | 6.7/7.2  | 5.1/6.1   |
| 4-10 MHz       | 5 | 4.6/5.5             | 4.9/6.3               | 6.0/6.2              | 7.0/7.2  | 5.0/5.1   |
|                | 4 | 3.6/4.5             | 5.3/6.7               | 5.9/6.2              | 7.1/7.6  | 4.8/5.0   |
|                | 3 | 2.5/3.5             | 5.8/7.0               | 6.0/6.2              | 6.9/7.2  | 4.9/5.2   |
|                | 2 | 1.7/2.4             | 6.2/7.3               | 6.1/6.2              | 6.9/7.0  | 5.3/5.4   |
| 10-30 MHz      | 5 | 4.6/5.5             | 4.3/5.2               | 6.1/6.3              | 7.0/7.4  | 5.1/5.2   |
|                | 4 | 3.6/4.5             | 4.7/5.8               | 6.1/6.5              | 7.3/8.0  | 4.9/5.2   |
|                | 3 | 2.5/3.5             | 5.1/6.2               | 5.9/6.0              | 6.6/6.7  | 5.2/5.4   |
|                | 2 | 1.7/2.4             | 5.4/6.6               | 5.8/6.1              | 6.6/7.2  | 5.0/6.1   |

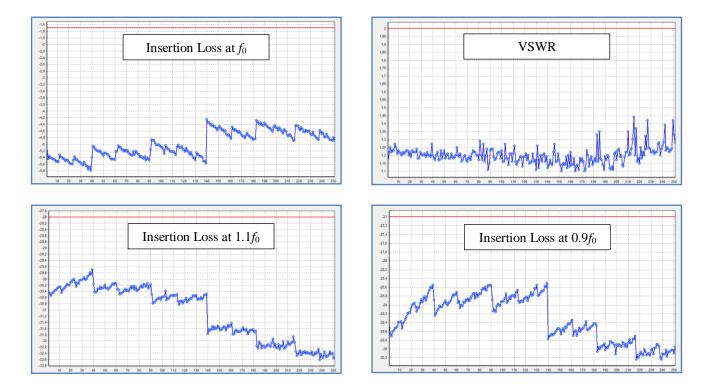
Note: table values are shown as average/maximum.


info@uranis.pro Page15

#### PPS1.5-30 block diagram

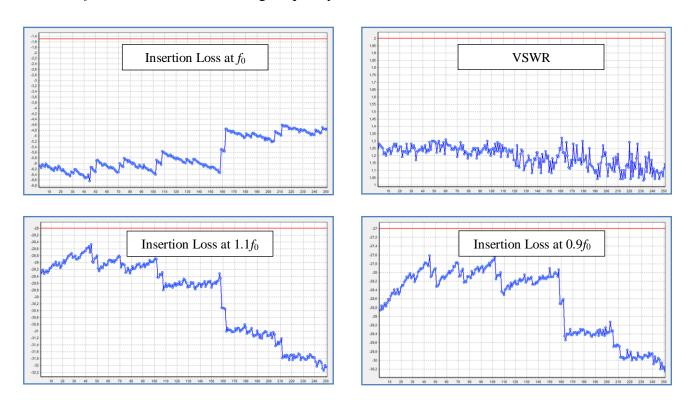


#### Frequency response functions and VSWR functions


Each frequency range has 251 tuning frequencies. Some frequency response functions and VSWR functions are shown below:

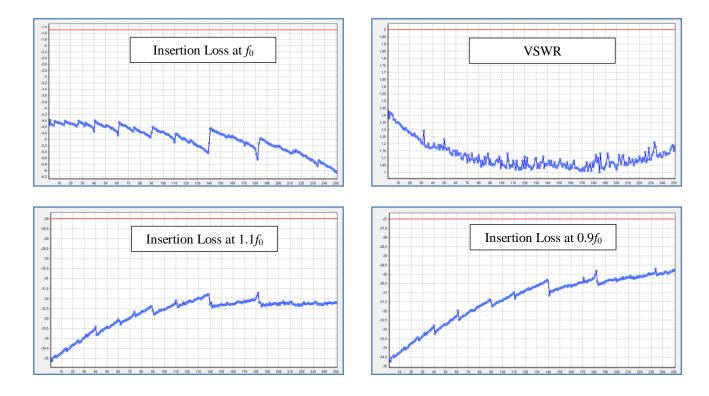


**Note:**  $f_0$  — tuning frequency;VSWR — VSWR at  $f_0$  frequency;OIL — insertion loss at  $f_0$ ; OIL-10% — insertion loss at  $0.9f_0$ ;OIL+10% — insertion loss at  $1.1f_0$ .


### 1.5-4 MHz filter performance

The following diagrams show value of Insertion Loss at  $f_0$ , Insertion Loss at  $0.9f_0$ , Insertion Loss at  $1.1f_0$  and VSWR at each tuning frequency for 1.5-4 MHz filter.




# 4-10 MHz filter performance

The following diagrams show value of Insertion Loss at  $f_0$ , Insertion Loss at  $0.9f_0$ , Insertion Loss at  $1.1f_0$  and VSWR at each tuning frequency for 4-10 MHz filter.



### 10-30 MHz filter performance

The following diagrams show value of Insertion Loss at  $f_0$ , Insertion Loss at  $0.9f_0$ , Insertion Loss at  $1.1f_0$  and VSWR at each tuning frequency for 10-30 MHz filter.



### **Pinout& Ratings**

| PIN#     | Reference designator | Description             | Notes                     |
|----------|----------------------|-------------------------|---------------------------|
| 1-5, 10  | N/C                  | No Connect              | —                         |
| 6        | PTT                  | SWRX/TX                 | Rx mode: 5V; Tx mode: 0V  |
| 7, 9, 11 | GND                  | Digital/RF Ground       | _                         |
| 8        | VCC                  | +5V Power Supply Input  | 4.75 to 5.25V @ 800mA     |
| 12       | VDD                  | +12V Power Supply Input | 11.5 to 12.5V @ 300mA     |
| 13       | STB                  | Strobe                  | Active: 0V; Inactive: +5V |
| 14       | CLK                  | Serial Clock            | Active: 5V; Inactive: 0V  |
| 15       | DI                   | Serial Data Input       | Active: 5V; Inactive: 0V  |

# **Serial interface description**

Serial interface consists of 3 signals: CLK (clock), DI (data input), STB (strobe). Data input is 11 bits code. First 8 bits determine the tuning frequency and the last 3 bits determine the frequency band.

## Frequencybandcode

| Frequency band | D9 | D10 | D11 |
|----------------|----|-----|-----|
| 1,5–4 MHz      | 1  | 0   | 0   |
| 4–10 MHz       | 0  | 1   | 0   |
| 10–30 MHz      | 0  | 0   | 1   |

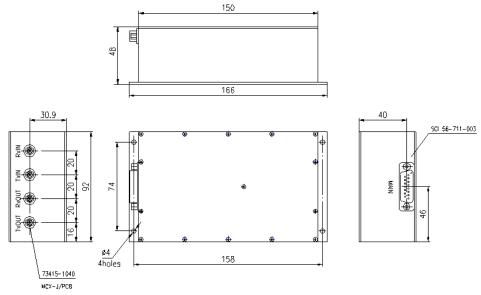
# **Tuning frequencycode**

Tuning frequency code is calculated by  $X_{10}$  conversion into binary code.  $X_{10}$  is calculated by the formula:

$$X_{10} = \left(\frac{f_0 - f_l}{f_h - f_l}\right) \times 250$$
,

 $f_0$  — tuning frequency;  $f_l$  — low frequency of the band;  $f_h$  — high frequency of the band.

#### **Example**


If you wish to tune to 8.02 MHz, the tune word is:

$$X_{10} = \left(\frac{8,02 - 4,00}{10,00 - 4,00}\right) \times 250 \approx 168;$$

$$168_2 = 10\ 10\ 10\ 00.$$



#### **Mechanical Outline**



**Note:** sizes are shown in millimeters.